Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Front Cell Infect Microbiol ; 12: 1085397, 2022.
Article in English | MEDLINE | ID: covidwho-2246798

ABSTRACT

Comprehensive identification of possible target cells for viruses is crucial for understanding the pathological mechanism of virosis. The susceptibility of cells to viruses depends on many factors. Besides the existence of receptors at the cell surface, effective expression of viral genes is also pivotal for viral infection. The regulation of viral gene expression is a multilevel process including transcription, translational initiation and translational elongation. At the translational elongation level, the translational efficiency of viral mRNAs mainly depends on the match between their codon composition and cellular translational machinery (usually referred to as codon adaptation). Thus, codon adaptation for viral ORFs in different cell types may be related to their susceptibility to viruses. In this study, we selected the codon adaptation index (CAI) which is a common codon adaptation-based indicator for assessing the translational efficiency at the translational elongation level to evaluate the susceptibility to two-pandemic viruses (HIV-1 and SARS-CoV-2) of different human cell types. Compared with previous studies that evaluated the infectivity of viruses based on codon adaptation, the main advantage of our study is that our analysis is refined to the cell-type level. At first, we verified the positive correlation between CAI and translational efficiency and strengthened the rationality of our research method. Then we calculated CAI for ORFs of two viruses in various human cell types. We found that compared to high-expression endogenous genes, the CAIs of viral ORFs are relatively low. This phenomenon implied that two kinds of viruses have not been well adapted to translational regulatory machinery in human cells. Also, we indicated that presumptive susceptibility to viruses according to CAI is usually consistent with the results of experimental research. However, there are still some exceptions. Finally, we found that two viruses have different effects on cellular translational mechanisms. HIV-1 decouples CAI and translational efficiency of endogenous genes in host cells and SARS-CoV-2 exhibits increased CAI for its ORFs in infected cells. Our results implied that at least in cases of HIV-1 and SARS-CoV-2, CAI can be regarded as an auxiliary index to assess cells' susceptibility to viruses but cannot be used as the only evidence to identify viral target cells.


Subject(s)
COVID-19 , HIV-1 , Humans , SARS-CoV-2/genetics , HIV-1/genetics , COVID-19/genetics , Codon/genetics , Adaptation, Physiological/genetics
2.
PLoS One ; 17(11): e0275623, 2022.
Article in English | MEDLINE | ID: covidwho-2098746

ABSTRACT

An important unmet need revealed by the COVID-19 pandemic is the near-real-time identification of potentially fitness-altering mutations within rapidly growing SARS-CoV-2 lineages. Although powerful molecular sequence analysis methods are available to detect and characterize patterns of natural selection within modestly sized gene-sequence datasets, the computational complexity of these methods and their sensitivity to sequencing errors render them effectively inapplicable in large-scale genomic surveillance contexts. Motivated by the need to analyze new lineage evolution in near-real time using large numbers of genomes, we developed the Rapid Assessment of Selection within CLades (RASCL) pipeline. RASCL applies state of the art phylogenetic comparative methods to evaluate selective processes acting at individual codon sites and across whole genes. RASCL is scalable and produces automatically updated regular lineage-specific selection analysis reports: even for lineages that include tens or hundreds of thousands of sampled genome sequences. Key to this performance is (i) generation of automatically subsampled high quality datasets of gene/ORF sequences drawn from a selected "query" viral lineage; (ii) contextualization of these query sequences in codon alignments that include high-quality "background" sequences representative of global SARS-CoV-2 diversity; and (iii) the extensive parallelization of a suite of computationally intensive selection analysis tests. Within hours of being deployed to analyze a novel rapidly growing lineage of interest, RASCL will begin yielding JavaScript Object Notation (JSON)-formatted reports that can be either imported into third-party analysis software or explored in standard web-browsers using the premade RASCL interactive data visualization dashboard. By enabling the rapid detection of genome sites evolving under different selective regimes, RASCL is well-suited for near-real-time monitoring of the population-level selective processes that will likely underlie the emergence of future variants of concern in measurably evolving pathogens with extensive genomic surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , COVID-19/epidemiology , COVID-19/genetics , Phylogeny , Codon/genetics , Sequence Analysis , Genome, Viral
3.
Transbound Emerg Dis ; 69(5): e2443-e2455, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2053020

ABSTRACT

The porcine deltacoronavirus (PDCoV) is a newly discovered pig enteric coronavirus that can infect cells from various species. In Haiti, PDCoV infections in children with acute undifferentiated febrile fever were recently reported. Considering the great potential of inter-species transmission of PDCoV, we performed a comprehensive analysis of codon usage patterns and host adaptation profiles of 54 representative PDCoV strains with the spike (S) gene. Phylogenetic analysis of the PDCoV S gene indicates that the PDCoV strains can be divided into five genogroups. We found a certain codon usage bias existed in the S gene, in which the synonymous codons are often ended with U or A. Heat map analysis revealed that all the PDCoV strains shared a similar codon usage trend. The PDCoV S gene with a dN/dS ratio lower than 1 reveals a negative selection on the PDCoV S gene. Neutrality analysis showed that natural selection is the dominant force in shaping the codon usage bias of the PDCoV S gene. Unexpectedly, host adaptation analysis reveals a higher adaptation level of PDCoV to Homo sapiens and Gallus gallus than to Sus scrofa. Compared to the USA lineage, the PDCoV strains in the Early China lineage and Thailand lineage were less adapted to their hosts, which indicates that the evolutionary process plays an important role in the adaptation ability of PDCoV. These findings of this study add to our understanding of PDCoV's evolution, adaptability, and inter-species transmission.


Subject(s)
Coronavirus Infections , Swine Diseases , Animals , Codon/genetics , Codon Usage , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Deltacoronavirus , Genome, Viral/genetics , Phylogeny , Swine , Swine Diseases/epidemiology
4.
Protein J ; 41(4-5): 515-526, 2022 10.
Article in English | MEDLINE | ID: covidwho-1982259

ABSTRACT

Moloney murine leukemia virus reverse transcriptase (MMLV-RT) is the most frequently used enzyme in molecular biology for cDNA synthesis. To date, reverse transcription coupled with Polymerase Chain Reaction, known as RT-PCR, has been popular as an excellent approach for the detection of SARS-CoV-2 during the COVID-19 pandemic. In this study, we aimed to improve the enzymatic production and performance of MMLV-RT by optimizing both codon and culture conditions in E. coli expression system. By applying the optimized codon and culture conditions, the enzyme was successfully overexpressed and increased at high level based on the result of SDS-PAGE and Western blotting. The total amount of MMLV-RT has improved 85-fold from 0.002 g L-1 to 0.175 g L-1 of culture. One-step purification by nickel affinity chromatography has been performed to generate the purified enzyme for further analysis of qualitative and quantitative RT activity. Overall, our investigation provides useful strategies to enhance the recombinant enzyme of MMLV-RT in both production and performance. More importantly, the enzyme has shown promising activity to be used for RT-PCR assay.


Subject(s)
Moloney murine leukemia virus , Codon/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Moloney murine leukemia virus/enzymology , Moloney murine leukemia virus/genetics , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism
5.
Int J Biol Macromol ; 204: 356-363, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1670549

ABSTRACT

Infections caused by SARS-CoV-2 have brought great harm to human health. After transmission for over two years, SARS-CoV-2 has diverged greatly and formed dozens of different lineages. Understanding the trend of its genome evolution could help foresee difficulties in controlling transmission of the virus. In this study, we conducted an extensive monthly survey and in-depth analysis on variations of nucleotide, amino acid and codon numbers in 311,260 virus samples collected till January 2022. The results demonstrate that the evolution of SARS-CoV-2 is toward increasing U-content and reducing genome-size. C, G and A to U mutations have all contributed to this U-content increase. Mutations of C, G and A at codon position 1, 2 or 3 have no significant difference in most SARS-CoV-2 lineages. Current viruses are more cryptic and more efficient in replication, and are thus less virulent yet more infectious. Delta and Omicron variants have high mutability over other lineages, bringing new threat to human health. This trend of genome evolution may provide a clue for tracing the origin of SARS-CoV-2, because ancestral viruses should have lower U-content and probably bigger genome-size.


Subject(s)
Base Composition/genetics , COVID-19/genetics , SARS-CoV-2/genetics , Base Sequence/genetics , COVID-19/transmission , China , Codon/genetics , Evolution, Molecular , Genome/genetics , Genome Size/genetics , Genome, Viral/genetics , Humans , Mutation/genetics , Phylogeny , SARS-CoV-2/pathogenicity , Uracil/metabolism
6.
Cell ; 184(20): 5189-5200.e7, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1401295

ABSTRACT

The independent emergence late in 2020 of the B.1.1.7, B.1.351, and P.1 lineages of SARS-CoV-2 prompted renewed concerns about the evolutionary capacity of this virus to overcome public health interventions and rising population immunity. Here, by examining patterns of synonymous and non-synonymous mutations that have accumulated in SARS-CoV-2 genomes since the pandemic began, we find that the emergence of these three "501Y lineages" coincided with a major global shift in the selective forces acting on various SARS-CoV-2 genes. Following their emergence, the adaptive evolution of 501Y lineage viruses has involved repeated selectively favored convergent mutations at 35 genome sites, mutations we refer to as the 501Y meta-signature. The ongoing convergence of viruses in many other lineages on this meta-signature suggests that it includes multiple mutation combinations capable of promoting the persistence of diverse SARS-CoV-2 lineages in the face of mounting host immune recognition.


Subject(s)
COVID-19/epidemiology , Evolution, Molecular , Mutation , Pandemics , SARS-CoV-2/genetics , Amino Acid Sequence/genetics , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , Codon/genetics , Genes, Viral , Genetic Drift , Host Adaptation/genetics , Humans , Immune Evasion , Phylogeny , Public Health
7.
Wiley Interdiscip Rev RNA ; 13(2): e1679, 2022 03.
Article in English | MEDLINE | ID: covidwho-1279257

ABSTRACT

If each of the four nucleotides were represented equally in the genomes of viruses and the hosts they infect, each base would occur at a frequency of 25%. However, this is not observed in nature. Similarly, the order of nucleotides is not random (e.g., in the human genome, guanine follows cytosine at a frequency of ~0.0125, or a quarter the number of times predicted by random representation). Codon usage and codon order are also nonrandom. Furthermore, nucleotide and codon biases vary between species. Such biases have various drivers, including cellular proteins that recognize specific patterns in nucleic acids, that once triggered, induce mutations or invoke intrinsic or innate immune responses. In this review we examine the types of compositional biases identified in viral genomes and current understanding of the evolutionary mechanisms underpinning these trends. Finally, we consider the potential for large scale synonymous recoding strategies to engineer RNA virus vaccines, including those with pandemic potential, such as influenza A virus and Severe Acute Respiratory Syndrome Coronavirus Virus 2. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.


Subject(s)
RNA Viruses , Viruses , Bias , Codon/genetics , Evolution, Molecular , Genome, Viral , Humans , Nucleotides , RNA Viruses/genetics , Viruses/genetics
8.
Genomics ; 113(4): 2177-2188, 2021 07.
Article in English | MEDLINE | ID: covidwho-1233643

ABSTRACT

The prevailing COVID-19 pandemic has drawn the attention of the scientific community to study the evolutionary origin of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). This study is a comprehensive quantitative analysis of the protein-coding sequences of seven human coronaviruses (HCoVs) to decipher the nucleotide sequence variability and codon usage patterns. It is essential to understand the survival ability of the viruses, their adaptation to hosts, and their evolution. The current analysis revealed a high abundance of the relative dinucleotide (odds ratio), GC and CT pairs in the first and last two codon positions, respectively, as well as a low abundance of the CG pair in the last two positions of the codon, which might be related to the evolution of the viruses. A remarkable level of variability of GC content in the third position of the codon among the seven coronaviruses was observed. Codons with high RSCU values are primarily from the aliphatic and hydroxyl amino acid groups, and codons with low RSCU values belong to the aliphatic, cyclic, positively charged, and sulfur-containing amino acid groups. In order to elucidate the evolutionary processes of the seven coronaviruses, a phylogenetic tree (dendrogram) was constructed based on the RSCU scores of the codons. The severe and mild categories CoVs were positioned in different clades. A comparative phylogenetic study with other coronaviruses depicted that SARS-CoV-2 is close to the CoV isolated from pangolins (Manis javanica, Pangolin-CoV) and cats (Felis catus, SARS(r)-CoV). Further analysis of the effective number of codon (ENC) usage bias showed a relatively higher bias for SARS-CoV and MERS-CoV compared to SARS-CoV-2. The ENC plot against GC3 suggested that the mutational bias might have a role in determining the codon usage variation among candidate viruses. A codon adaptability study on a few human host parasites (from different kingdoms), including CoVs, showed a diverse adaptability pattern. SARS-CoV-2 and SARS-CoV exhibit relatively lower but similar codon adaptability compared to MERS-CoV.


Subject(s)
COVID-19/genetics , Codon Usage/genetics , Evolution, Molecular , SARS-CoV-2/genetics , Base Composition/genetics , COVID-19/virology , Codon/genetics , Computational Biology , Genome, Viral/genetics , Humans , Nucleotides/genetics , Pandemics , SARS-CoV-2/pathogenicity
9.
Sheng Wu Gong Cheng Xue Bao ; 37(4): 1334-1345, 2021 Apr 25.
Article in Chinese | MEDLINE | ID: covidwho-1209675

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is a highly conserved and mutation-resistant coronaviral enzyme, which plays a pivotal role in viral replication, making it an ideal target for the development of novel broad-spectrum anti-coronaviral drugs. In this study, a codon-optimized Mpro gene was cloned into pET-21a and pET-28a expression vectors. The recombinant plasmids were transformed into E. coli Rosetta(DE3) competent cells and the expression conditions were optimized. The highly expressed recombinant proteins, Mpro and Mpro-28, were purified by HisTrapTM chelating column and its proteolytic activity was determined by a fluorescence resonance energy transfer (FRET) assay. The FRET assay showed that Mpro exhibits a desirable proteolytic activity (25 000 U/mg), with Km and kcat values of 11.68 µmol/L and 0.037/s, respectively. The specific activity of Mpro is 25 times that of Mpro-28, a fusion protein carrying a polyhistidine tag at the N and C termini, indicating additional residues at the N terminus of Mpro, but not at the C terminus, are detrimental to its proteolytic activity. The preparation of active SARS-CoV-2 Mpro through codon-optimization strategy might facilitate the development of the rapid screening assays for the discovery of broad-spectrum anti-coronaviral drugs targeting Mpro.


Subject(s)
COVID-19 , SARS-CoV-2 , Codon/genetics , Cysteine Endopeptidases/genetics , Escherichia coli/genetics , Humans , Peptide Hydrolases , Viral Nonstructural Proteins/genetics
10.
FEBS J ; 288(17): 5201-5223, 2021 09.
Article in English | MEDLINE | ID: covidwho-1146926

ABSTRACT

Circulating animal coronaviruses occasionally infect humans. The SARS-CoV-2 is responsible for the current worldwide outbreak of COVID-19 that has resulted in 2 112 844 deaths as of late January 2021. We compared genetic code preferences in 496 viruses, including 34 coronaviruses and 242 corresponding hosts, to uncover patterns that distinguish single- and 'promiscuous' multiple-host-infecting viruses. Based on a codon usage preference score, promiscuous viruses were shown to significantly employ nonoptimal codons, namely codons that involve 'wobble' binding to anticodons, as compared to single-host viruses. The codon adaptation index (CAI) and the effective number of codons (ENC) were calculated for all viruses and hosts. Promiscuous viruses were less adapted hosts vs single-host viruses (P-value = 4.392e-11). All coronaviruses exploit nonoptimal codons to infect multiple hosts. We found that nonoptimal codon preferences at the beginning of viral coding sequences enhance the translational efficiency of viral proteins within the host. Finally, coronaviruses lack endogenous RNA degradation motifs to a significant degree, thereby increasing viral mRNA burden and infection load. To conclude, we found that promiscuously infecting coronaviruses prefer nonoptimal codon usage to remove degradation motifs from their RNAs and to dramatically increase their viral RNA production rates.


Subject(s)
COVID-19/genetics , Codon Usage/genetics , Evolution, Molecular , SARS-CoV-2/genetics , Animals , COVID-19/virology , Codon/genetics , Computational Biology , Genetic Code/genetics , Genome, Viral/genetics , Humans , Phylogeny , RNA, Messenger/genetics , SARS-CoV-2/pathogenicity , Viral Proteins/genetics
11.
Viruses ; 13(3)2021 03 02.
Article in English | MEDLINE | ID: covidwho-1125910

ABSTRACT

Understanding SARS-CoV-2 evolution is a fundamental effort in coping with the COVID-19 pandemic. The virus genomes have been broadly evolving due to the high number of infected hosts world-wide. Mutagenesis and selection are two inter-dependent mechanisms of virus diversification. However, which mechanisms contribute to the mutation profiles of SARS-CoV-2 remain under-explored. Here, we delineate the contribution of mutagenesis and selection to the genome diversity of SARS-CoV-2 isolates. We generated a comprehensive phylogenetic tree with representative genomes. Instead of counting mutations relative to the reference genome, we identified each mutation event at the nodes of the phylogenetic tree. With this approach, we obtained the mutation events that are independent of each other and generated the mutation profile of SARS-CoV-2 genomes. The results suggest that the heterogeneous mutation patterns are mainly reflections of host (i) antiviral mechanisms that are achieved through APOBEC, ADAR, and ZAP proteins, and (ii) probable adaptation against reactive oxygen species.


Subject(s)
COVID-19/immunology , COVID-19/virology , Mutation , SARS-CoV-2/genetics , Base Sequence , COVID-19/genetics , Codon/genetics , Evolution, Molecular , Genome, Viral , Humans , Pandemics , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/immunology
12.
Sci Rep ; 11(1): 4108, 2021 02 18.
Article in English | MEDLINE | ID: covidwho-1091453

ABSTRACT

In December 2019, rising pneumonia cases caused by a novel ß-coronavirus (SARS-CoV-2) occurred in Wuhan, China, which has rapidly spread worldwide, causing thousands of deaths. The WHO declared the SARS-CoV-2 outbreak as a public health emergency of international concern, since then several scientists are dedicated to its study. It has been observed that many human viruses have codon usage biases that match highly expressed proteins in the tissues they infect and depend on the host cell machinery for the replication and co-evolution. In this work, we analysed 91 molecular features and codon usage patterns for 339 viral genes and 463 human genes that consisted of 677,873 codon positions. Hereby, we selected the highly expressed genes from human lung tissue to perform computational studies that permit to compare their molecular features with those of SARS, SARS-CoV-2 and MERS genes. The integrated analysis of all the features revealed that certain viral genes and overexpressed human genes have similar codon usage patterns. The main pattern was the A/T bias that together with other features could propitiate the viral infection, enhanced by a host dependant specialization of the translation machinery of only some of the overexpressed genes. The envelope protein E, the membrane glycoprotein M and ORF7 could be further benefited. This could be the key for a facilitated translation and viral replication conducting to different comorbidities depending on the genetic variability of population due to the host translation machinery. This is the first codon usage approach that reveals which human genes could be potentially deregulated due to the codon usage similarities between the host and the viral genes when the virus is already inside the human cells of the lung tissues. Our work leaded to the identification of additional highly expressed human genes which are not the usual suspects but might play a role in the viral infection and settle the basis for further research in the field of human genetics associated with new viral infections. To identify the genes that could be deregulated under a viral infection is important to predict the collateral effects and determine which individuals would be more susceptible based on their genetic features and comorbidities associated.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/genetics , Coronavirus Infections/virology , Codon/genetics , Codon Usage , Computational Biology/methods , Coronavirus/genetics , Coronavirus Infections/metabolism , Genes, Viral , Genome, Viral , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Phylogeny , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics
13.
J Microbiol Immunol Infect ; 53(3): 419-424, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-5978

ABSTRACT

Translation of a genetic codon without a cognate tRNA gene is affected by both the cognate tRNA availability and the interaction with non-cognate isoacceptor tRNAs. Moreover, two consecutive slow codons (slow di-codons) lead to a much slower translation rate. Calculating the composition of host specific slow codons and slow di-codons in the viral protein coding sequences can predict the order of viral protein synthesis rates between different virus strains. Comparison of human-specific slow codon and slow di-codon compositions in the genomes of 590 coronaviruses infect humans revealed that the protein synthetic rates of 2019 novel coronavirus (2019-nCoV) and severe acute respiratory syndrome-related coronavirus (SARS-CoV) may be much faster than other coronaviruses infect humans. Analysis of host-specific slow codon and di-codon compositions provides links between viral genomic sequences and capability of virus replication in host cells that may be useful for surveillance of the transmission potential of novel viruses.


Subject(s)
Betacoronavirus/genetics , Codon/genetics , Protein Biosynthesis/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Genome, Viral/genetics , Humans , Phylogeny , RNA, Transfer/genetics , SARS-CoV-2 , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL